STANCER

dBm to Volts to Watts Conversion

dBm to Volts to Watts Conversion

Enter power level \(P(\mathrm{dBm})\) and impedance \(Z\) to compute \(V_{\mathrm{RMS}}\) and \(P(\mathrm{W})\). (Example: \(P=100\,\mathrm{dBm}\), \(Z=50\,\Omega\) → \(V_{\mathrm{RMS}}\approx 22360.7\,\mathrm{V}\))

dBm is defined as power ratio in decibel (dB) referenced to one milliwatt (mW). It is an abbreviation for dB with respect to 1 mW and the “m” in dBm stands for milliwatt.

Calculations

Inputs: P(dBm), Z(Ω)
Power level P(dBm) ref 1 mW
Voltage V(RMS)
Watt P(watts)
Impedance Z Ω
Formulas
\[ P(\mathrm{W}) = 10^{\frac{P(\mathrm{dBm}) - 30}{10}} \] \[ V_{\mathrm{RMS}}(\mathrm{V}) = \sqrt{\frac{Z}{1000}}\;10^{\frac{P(\mathrm{dBm})}{20}} \] \[ P(\mathrm{dBm}) = 10\log_{10}\!\big(P(\mathrm{W})\big) + 30 \] \[ P(\mathrm{dBm}) = 10\log_{10}\!\left(\frac{V_{\mathrm{RMS}}^{2}\cdot 1000}{Z}\right) \]
* Ensure \(Z>0\). Very large dBm values can produce very large Watts/Volts results.

Request a Quote